The Natural Tooth Pontic; Simplified

Lambert J. Stumpel, III, DDS

Abstract

This paper’s objective is to describe a simple, economical and fast method to replace a single tooth. Utilizing an indirectly fabricated composite resin framework reinforced with polyethylene fiber and the existing tooth as pontic. This tooth can be the natural tooth or the restorative crown. In addition, this particular design allows for exact repositioning of the coronal part of the extracted tooth in its original intra-oral dimensional position. This chair-side technique does not require laboratory involvement.

Tooth loss in the anterior region is for most patients a deeply traumatic experience. Although an anterior tooth has mechanical functionality, it is the compromised facial esthetics associated with tooth loss that is the patient’s primary concern. Immediate esthetic replacement of the missing tooth will be required. This replacement can be temporary, semi-temporary or permanent in nature. Depending on many clinical and economic factors, a course of treatment is decided upon by the patient and dentist. The start of the definitive treatment depends on many factors and thus may require short to long temporization times. Final restorations can vary between removable prosthesis, tooth-supported prosthesis and the increasingly popular implant-supported prosthesis. Irrespective of the final treatment, Plan 1 will have to temporarily restore the patient’s esthetic appearance while functionally stabilizing the compromised arch.

A transitional prosthesis may vary between simple removable tissue supported dentures; temporary full coverage fixed partial dentures and bonded fixed partial dentures. When the definitive restoration does not require tooth preparation, tooth structure removal is contra-indicated for the provisional restoration. This is exemplified by implant-supported prosthesis. Although interest is developing in the immediate loading of dental implants, the current protocol requires a period of undisturbed osseo-integration. As the final prosthesis will be implant born, the neighboring teeth need no involvement. Temporization then can be fixed with a bonded prosthesis or tissue supported though care should be exercised to not load the under laying implant. Most patients desire a secure, fixed-tooth replacement prosthesis. The bonded prosthesis can be as simple as a singular tooth pontic or a resin-bonded fixed partial denture. The singular bonded tooth has been deemed short lived where the resin bonded FPD has a greatly improved prognosis. The original Rochette Resin Bonded Partial Denture (RBPD) has a metal backing, requiring dental laboratory involvement. Alternative designs utilize a plasma-treated woven polyethylene fiber (Ribbon, Ribbon Inc, Seattle, Wash.) to reinforce a resin-based framework. The following technique utilizes the same fiber, in an indirect fabrication fashion. Additionally, wings are placed to allow precise repositioning.

Author / Lambert J. Stumpel, III, DDS, is in private practice in San Francisco. He also is the director of implant prosthetics. Surgical Implant Training, at the Highland Hospital Oral and Maxillofacial Residency Program, University of the Pacific, San Francisco. Dr. Stumpel also is an assistant clinical professor at the University of California San Francisco School of Dentistry Department of Restorative Dentistry.
Technique

- Take a pre-operative reversible hydrocolloid impression (Jeltrate Plus, Dentsply Caulk Inc., Milford, Del.).
- Cast with a dedicated poly vinyl siloxane material (Mach-2 Die Silicone, Parkell Bio-materials, Farmingdale, N.Y.) and create a base with a rigid poly vinyl siloxane material (Blu-Mousse, Parkell Bio-materials, Farmingdale, N.Y.).
- Measure the length and width of the area to be covered and cut the corresponding section of plasma treated woven polyethylene fiber (Ribbond, Ribbond Inc., Seattle, Wash.).
- Wet this section with a light polymerizing bonding agent (Optibond FL, Kerr Corporation, Orange, Calif.) and place a small amount of a flowable light polymerizing micro-filled composite resin (Heliomolar flow, Ivoclar Vivadent Inc., Amherst, N.Y.) over the surface.
- Place the wetted section in the required position on the poly vinyl siloxane cast and initiate polymerization with a visible light curing light. (Optilux 501, Kerr Corporation, Orange, Calif.) Add flowable composite to create bulk to the framework (Figure 1.)
- Place a small ribbon of flowable composite material originating from the just-created framework over the incisal edge of the abutment tooth and extend it approximately 3 mm onto the buccal part of the tooth. Place this wing over a smooth part of the tooth, as the smooth areas will be less prone to duplication errors. Repeat once for the other abutment tooth and place two wings over the future pontic site. These wings will create a very secure seat, first for the exact replacement of the tooth segment, and secondly for the accurate positioning of the RBPD (Figures 2 and 3.)
- Carefully extract the tooth as not to damage the coronal tooth segment. Place the dental implant, take an implant level impression if indicated and suture the site (Figure 4.)
- Take a post-operative reversible hydrocolloid impression (Jeltrate Plus, Dentsply Caulk Inc., Milford, Del.).
- Cast with a dedicated poly vinyl siloxane material (Mach-2 Die Silicone,
Parkell Bio-materials, Farmingdale, N.Y.) and create a base with a rigid polyvinyl siloxane material (Blu-Mousse, Parkell Bio-materials, Farmingdale, N.Y.). (Figure 5.)

- Remove the most apical part of the tooth, shape, etch, bond and fill the remaining root canal space with flowable composite.

- Airborne particle abrade the lingual tooth part that will mate with the pre-made framework, etch with a 35 percent phosphoric etchant (Ultra-Etch, Ultradent Products, Inc., South Jordan, Utah), dry, apply bonding resin and place flowable composite. Place bonding material on the corresponding part of the framework. Reposition the coronal part of the tooth into the mating part of the framework. Due to the polymerization shrinkages of the cast and the composite wings, this will be a very snug fit. Assure that no material contaminates the abutment areas of the framework. Initiate polymerization with the light curing light (Figures 6 and 7.)

- Reposition the newly created RBPD onto the post-operative cast. Adjust the apical part of the tooth so it will have the required shape and relationship with the edentulous site. The post-operative cast allows easy visualization of all aspects of the framework while preventing contamination (Figures 8 and 9.)

- Place dental dam isolation (Hygenic Dental Dam, Coltene/Whaledent Inc., Mahwah, N.J.). Air particle abrade the to-be covered parts of the abutment teeth. Carefully place 35 percent phosphoric etchant only on the areas to be covered by the framework. Do not place any etchant on the areas to be covered by the wings. This will facilitate finishing greatly as these wings should not be bonded to the tooth. Apply bonding resin, and a small quantity of flowable composite. Now position the RBPD in place, the wings will guide the framework exactly in place. Initiate polymerization with the light unit. Place additional composite as indicated and complete polymerization (Figures 10 through 12.)

- Remove the wings and finish all surfaces with rubber finishing points (Bowlin, Shofu Dental Corporation, San
Marcos, Calif.) (Figure 13.) Remove the rubberdam. Adjust occlusal contacts on the framework and pontic to minimize stresses on the assembly (Figures 14 and 15.)

Figure 16 is a framework in progress and Figure 17 shows the finished result for Case 2. In Case 3, Figure 18 is a nine-year post-op view.

Summary
A technique is described to indirectly fabricate a fiber-reinforced framework. After securely repositioning and bonding the coronal part of the natural tooth, the Resin Bonded Fixed Bridge can be precisely repositioned and bonded to the abutment teeth.

References

To request a printed copy of this article, please contact Lambert J. Stumpel, III, DDS, 450 Sutter St., Suite 2530, San Francisco, Calif., 94108.